# The Empirical Distribution Function

This post is going to look at a useful non-parametric method for estimating the cumulative distribution function (CDF) of a random variable called the empirical distribution function (sometimes called the empirical CDF). We'll talk a bit about the mechanics of computing it, some theory about its confidence intervals and also do some simulations to gain some intuition about how it behaves.

# Elementary Statistics for Direct Marketing

This post is going to look at some elementary statistics for direct marketing. Most of the techniques are direct applications of topics learned in a first year statistics course hence the "elementary". I'll start off by covering some background and terminology on the direct marketing and then introduce some of the statistical inference techniques that are commonly used. As usual, I'll mix in some theory where appropriate to build some intuition.

# A Primer on Statistical Inference and Hypothesis Testing

This post is about some fundamental concepts in classical (or frequentist) statistics: inference and hypothesis testing. A while back, I came to the realization that I didn't have a good intuition of these concepts (at least not to my liking) beyond the mechanical nature of applying them. What was missing was how they related to a probabilistic view of the subject. This bothered me since having a good intuition about a subject is probably the most useful (and fun!) part of learning a subject. So this post is a result of my re-education on these topics. Enjoy!

# Markov Chain Monte Carlo Methods, Rejection Sampling and the Metropolis-Hastings Algorithm

In this post, I'm going to continue on the same theme from the last post: random sampling. We're going to look at two methods for sampling a distribution: rejection sampling and Markov Chain Monte Carlo Methods (MCMC) using the Metropolis Hastings algorithm. As usual, I'll be providing a mix of intuitive explanations, theory and some examples with code. Hopefully, this will help explain a relatively straight-forward topic that is frequently presented in a complex way.

# Sampling from a Normal Distribution

One of the most common probability distributions is the normal (or Gaussian) distribution. Many natural phenomena can be modeled using a normal distribution. It's also of great importance due to its relation to the Central Limit Theorem.

In this post, we'll be reviewing the normal distribution and looking at how to draw samples from it using two methods. The first method using the central limit theorem, and the second method using the Box-Muller transform. As usual, some brief coverage of the mathematics and code will be included to help drive intuition.